在能源互聯(lián)網(wǎng)背景下,電化學儲能、儲熱、氫儲能、電動汽車等儲能技術或設備圍繞電力供應,實現(xiàn)了電網(wǎng)、交通網(wǎng)、天然氣管網(wǎng)、供熱供冷網(wǎng)的“互聯(lián)”,儲能和能源轉換設備共同建立了多能源網(wǎng)絡的耦合關系。在未來的能源互聯(lián)網(wǎng)中,部分新能源發(fā)電將通過制氫、制熱等方式進行轉換,或以電化學儲能等雙向電力儲能設備存儲并適時返回電網(wǎng)。在各電力儲能技術的支撐下,新能源發(fā)電與熱電聯(lián)供機組、燃料電池、熱泵等轉換設備協(xié)調運行,實現(xiàn)了在新能源高效利用目標下,以電能為核心的多能源生產(chǎn)和消費的匹配。
隨著能源互聯(lián)網(wǎng)研究的逐漸推進,其應用的價值將不斷體現(xiàn),應用的范圍也將不斷擴張,是能源互聯(lián)網(wǎng)中極具發(fā)展前景的技術和產(chǎn)業(yè)。
各種儲能技術及產(chǎn)業(yè)發(fā)展現(xiàn)狀和趨勢
儲能從技術原理上主要可分為適合能量型應用的電化學儲能、壓縮空氣儲能、熔融鹽蓄熱、氫儲能以及適合功率型短時應用的飛輪、超導和超級電容器儲能等。
抽水蓄能是目前技術最成熟、應用最廣泛的大規(guī)模儲能技術,具有規(guī)模大、壽命長、運行費用低等優(yōu)點,目前效率可達70%左右,建設成本大致為3500¥/kW~4000¥/kW。缺點主要是電站建設受地理資源條件的限制,并涉及上、下水庫的庫區(qū)淹沒、水質的變化以及庫區(qū)土壤鹽堿化等一系列環(huán)保問題。
鈉硫電池具有能量密度大,無自放電,原材料鈉、硫易得等優(yōu)點,缺點主要是倍率性能差、成本高,以及高溫運行存在安全隱患等。未來發(fā)展趨勢主要是提高倍率性能、進一步降低制造成本、提高長期運行的可靠性和系統(tǒng)安全性。
目前主要的液流電池體系有:多硫化鈉/溴、全釩、鋅/溴、鐵/鉻等體系,其中全釩體系發(fā)展比較成熟,已建成多個MW級工程示范項目,具有壽命長、功率和容量可獨立設計、安全性好等優(yōu)點。缺點主要是效率和能量密度低、運行環(huán)境溫度窗口窄。發(fā)展趨勢主要是選用高選擇性、低滲透性的離子膜和高導電率的電極提升效率,提高工作電流密度和電解質的利用率以解決高成本問題等。
鉛碳電池是在傳統(tǒng)鉛酸電池的鉛負極中以“內并”或“內混”的形式引入,具有電容特性的碳材料而形成的新型儲能裝置。相比傳統(tǒng)鉛酸電池具有倍率高、循環(huán)壽命長等優(yōu)點。但是碳材料的加入易產(chǎn)生負極易析氫、電池易失水等問題,發(fā)展趨勢主要是進一步提高電池比能量密度和循環(huán)壽命,同時開發(fā)廉價、高性能的碳材料。
鋰離子電池的材料種類豐富多樣,其中適合作正極的材料有錳酸鋰、磷酸鐵鋰、鎳鈷錳酸鋰;適合作負極的材料有石墨、硬(軟)碳和鈦酸鋰等。鋰離子電池的主要優(yōu)點是:儲能密度和功率密度高,效率高,應用范圍廣;關注度高,技術進步快,發(fā)展?jié)摿Υ蟆V饕秉c是:采用有機電解液,存在安全隱患;壽命和成本等技術經(jīng)濟指標仍待提升。
近年來以美國和日本為代表的發(fā)達國家對儲能電池的發(fā)展路線進行了探索,在實現(xiàn)電池的長壽命、低成本、高安全方面取得了一定的進展。以零應變材料為代表的長壽命電池材料、能夠擺脫鋰資源束縛的鈉系電池體系、基于固態(tài)電解質的全固態(tài)電池等是目前主要的研究熱點和發(fā)展趨勢。
壓縮空氣儲能具有規(guī)模大、壽命長、運行維護費用低等優(yōu)點。目前傳統(tǒng)使用天然氣并利用地下洞穴的壓縮空氣儲能已經(jīng)比較成熟,效率可達70%。近年來,國內外學者相繼提出了絕熱、液態(tài)和超臨界等多種新型壓縮空氣儲能技術,擺脫了對地理和資源條件的限制,但目前基本還處于技術突破或小規(guī)模示范階段,效率基本低于60%。發(fā)展趨勢主要是通過充分利用整個循環(huán)過程中的放熱、釋冷來提高整體效率,同時通過模塊化實現(xiàn)規(guī)模化。
熔融鹽蓄熱是利用熔融鹽使用溫區(qū)大、比熱容高、換熱性能好等特點,將熱量通過傳熱工質和換熱器加熱熔融鹽存儲起來,需要利用熱量時再通過換熱器、傳熱工質和動力泵等設備,將儲存的熱量取出以供使用,目前已在太陽能熱發(fā)電中實現(xiàn)應用。其優(yōu)點主要是規(guī)模大,可方便配合常規(guī)燃汽機使用等。但目前還存在成本高、效率和可靠性低等缺點,發(fā)展趨勢主要是突破工質選擇和關鍵材料。
氫儲能是通過電解把水分解成氫氣和氧氣,實現(xiàn)電能到化學能的轉化,被認為是未來能源互聯(lián)網(wǎng)的重要支撐,日趨成為多個國家能源科技創(chuàng)新和產(chǎn)業(yè)支持的焦點。目前存在的問題主要是能量轉換效率低(總效率低于50%)、生產(chǎn)過程能耗大,需配套建立氫氣輸送管線、加氫站等相關基礎設施。在氫儲能的各環(huán)節(jié)中,制氫的主要發(fā)展趨勢是減少能耗、降低成本、提高轉化效率,儲氫主要是發(fā)展新型高效的儲氫材料、提高儲氫容器的耐壓等級,輸氫主要是發(fā)展抗氫脆和滲透的輸氫管道材料及研究氫與天然氣混合輸送的技術、建設及完善相關配套設施,用氫主要是發(fā)展低成本的氣體重整技術、降低氫燃料電池的成本、提高性能穩(wěn)定性。
飛輪儲能具有功率密度高、使用壽命長和對環(huán)境友好等優(yōu)點,其缺點主要是儲能密度低和自放電率較高,目前主要適用于電能質量改善、不間斷電源等應用場合。
超導儲能和超級電容器儲能在本質上是以電磁場儲存能量,不存在能量形態(tài)的轉換過程,具有效率高、響應速度快和循環(huán)使用壽命長等優(yōu)點,適合在提高電能質量等場合應用。超導儲能的缺點是需要低溫制冷系統(tǒng)、系統(tǒng)構建復雜、成本較高等。超級電容器在大規(guī)模應用中面臨的主要問題是能量密度低,其發(fā)展趨勢主要是開發(fā)高性能電極及電解液關鍵材料技術,以提高儲能密度、降低成本。
我國儲能技術及產(chǎn)業(yè)發(fā)展的重點方向
儲能是“第三次工業(yè)革命”中很重要的一環(huán),中國要重視儲能這一戰(zhàn)略性前沿技術的開發(fā),搶占這一新興產(chǎn)業(yè)的科技制高點。
作為學科交叉性強、技術環(huán)節(jié)多、產(chǎn)業(yè)鏈較長的具有戰(zhàn)略意義的前沿技術和戰(zhàn)略性新興產(chǎn)業(yè),相應的技術研究和產(chǎn)業(yè)發(fā)展也宜分階段實施。近期(2016年-2017年)以電化學儲能為主要攻關方向,重點開展在國外已取得技術突破并有重大應用前景的鈦酸鋰和鉛炭電池研究和應用示范。中期(2018年-2020年)以新型長壽命、低成本的鋰離子和鉛碳兩種電池儲能及深冷壓縮空氣儲能為主攻方向,同時開展容量高溫蓄熱和高效氫儲能的前期探索研究。遠期(2021年-2030年)重點突破全固態(tài)電池的產(chǎn)業(yè)化技術、大規(guī)模深冷液化壓縮空氣儲能和配套高效蓄熱的工程化技術、大規(guī)模高效氫儲能關鍵技術。
預期通過10年~15年持續(xù)的科研攻關和產(chǎn)業(yè)發(fā)展,最終全面掌握針對儲能應用的高安全性全固態(tài)電池的量產(chǎn)技術,實現(xiàn)關鍵材料技術的原創(chuàng)突破,液化壓縮空氣儲能效率突破60%,形成涵蓋儲能基礎研究、試制、規(guī)?;a(chǎn)的全產(chǎn)業(yè)鏈體系,帶動新材料、新能源、高端裝備等相關產(chǎn)業(yè)的互動、健康、可持續(xù)發(fā)展。